sábado, 24 de noviembre de 2012

Tarea 18: LA HELENA DE LAS CURVAS

-La cicloide natural, una curva Braquistócrona y Tautócrona.

Los matemáticos de la antigüedad consideraban a la cicloide la más bella de las curvas. Fueron tantos los esfuerzos que dedicaron al estudio de sus sorprendentes propiedades que acabó por llamársele la “Helena de la Geometría”, en recuerdo de la mujer de Menelao, de quien se decía que por ella “se lanzaron al mar un millar de barcos”, aunque otras historias argumentan que, por lo disputada que fue entre los matemáticos de la época la resolución del problema planteado por Bernouilli.
¿El camino más corto es siempre el más rápido?
La cicloide tiene una larga historia ligada al problema de hallar la forma que debe tener un camino que una dos puntos fijos A y B para que una partícula emplee un tiempo mínimo en recorrerlo. El camino más corto es el segmento de la recta que pasa por los puntos A y B, pero el tiempo no depende sólo de la longitud del camino sino también de la velocidad de la partícula.
La curva solución del problema es la cicloide:

En 1697 Isaac Newton recibe y resuelve el problema de la braquistócrona de Jean Bernoulli. El matemático suizo Bernoulli había desafiado a sus compañeros a resolverlo antes de seis meses. Newton no sólo resolvió el problema antes de ir a la cama esa noche después de que el desafío había sido publicado, además, inventó una nueva rama de las matemáticas denominada “cálculo de variaciones”. Desde ese momento, la cicloide recibió el nombre de braquistócrona (palabra griega derivada de tiempo y mínimo). Newton publica la solución de forma anónima, pero el trabajo brillante delata su identidad, y cuando Bernoulli observa la solución, da vida a la frase: “conocemos al león por sus garras”.
La braquistocronía no es la única propiedad curiosa de la cicloide. De hecho tiene una que es más sorprendente si cabe. Podríamos enunciarla de la siguiente manera:
Supongamos que tenemos una cicloide que “cuelga” hacia abajo y que dejamos caer a lo largo de ella dos bolas desde diferentes puntos. La cuestión es que da igual desde qué puntos las dejemos caer ya que las bolas llegan a la vez al punto más bajo.
Esta propiedad se denomina tautocronía (que significa mismo tiempo). El descubrimiento de la tautocronía de la cicloide es asociado a Huygens en 1673.

En este vídeo podemos ver que lo que sirve para la distancia el camino mas corto es la recta, sin embargo en tiempo la curva hace mas corto el recorrido.



En este segundo vídeo ademas de la explicación de la cicloide, podemos encontrar la relación de la cicloide con el área y el radio de las circunferencias y la demostración de que da igual de que punto de la curva tires una bola u otra porque siempre llegaran al mismo tiempo al centro

 

Fuentes: http://euclides59.wordpress.com/2012/06/16/cicloide/  y MUDIC.


No hay comentarios:

Publicar un comentario